Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

Your Position: Home - - Smart Guides Guide to Choosing a Modem Router

Smart Guides Guide to Choosing a Modem Router

Author: Justin

May. 06, 2024

Smart Guides Guide to Choosing a Modem Router

Choosing a Modem Router

 

Please visit our website for more information on this topic.

Most modern customers expect data speeds well beyond what a CAT-4 can offer

 

When choosing a Modem Router, a higher LTE category (e.g. CAT-12) means better performance.   A CAT-6 will usually perform twice as fast as a CAT-4 in the same location, and a CAT-12 will usually perform at least twice as fast as a CAT-6 at the same location.  Choosing a higher category modem also means you can get better speeds than a lower category modem in areas with poor signal which really makes a difference to the quality of the service.   But there's more - with a CAT-12 or CAT-6 modem it is possible get service in areas where the signal so low that it's unusable on a CAT-4. 

 

The key takeaway

Choosing a modem category that is too low for the location or the role of the device in the bigger ICT picture leads to higher rates of product returns, revisits to site, more technical trouble tickets, lower customer satisfaction and more.  

 

If you are an installer

Find out how much data capacity your customers generally require.  If they are in an area with good signal and just want something to do some light browising or video streaming, or run multiple security cameras, then perhaps a CAT-6 is the right choice for the most reliable connection.  A CAT-4 may even do in a pinch with the right antenna combination and you are armed with the knowledge one of our pre-check site surveys offers.

But if your customer wants no compromises on speed or needs to support multiple devices streaming content, browisng the internet fast download speeds, or are in an area where the signal is poor, there is no question, nothing less than a CAT-12 device is going to cut it.

 

Technical Explaination

In addition to accessing wider bandwidth, higher category modems are also packed with more advanced technology inside

 

Start off by considering the following table:

Category Maximum Bandwidth (Carrier Aggregation) Maximum Speed (Download/Upload)  CAT-4 2x 10MHz 150Mbps/50Mbps  CAT-6 2x 20MHz 300Mbps/50Mbps  CAT-12 3x 20MHz 600Mbps/150Mbps

 

Higher categories are able to utilise more of the available bandwitdh.  But in addition to having wider bandwidth to play with, they are also packed with more advanced technology inside which allows them to run more sophisticated modulation schemes on top of that bandwidth, which translates to higher capacity and better data integrity - which translates to better speeds.  This is why when you put a CAT-4 or a CAT-6 beside a CAT-12 you notice such a dramatic difference, even on the same network with the same signal.

 

Introducing our new Telco X1 Pro and Telco T1 - fast, reliable, user friendly!


 

Telco Electronics - Experience the

Telco Difference

Today

We have been helping Australians solve their mobile connectivity issues for over a decade, so we understand what it takes to achieve the best possible performance.  That is why we started Telco Electronics, our own line of high performance and easy to use modem routers.  While they work great out of the box, they are packed with useful settings and hardware features to optimise your connection too, like: Band Locking to tune your Telco device for your environment, saving cost and improving performance, Bridge Mode for effortless integration into existing networks, and support for Telco Cloud Management System, our all-in-one remote management and monitoring suite.

Pair a Telco Electronics device with one of our Telco antennas for maximum performance.   Need advice for picking an antenna, would like firmware customisation, engineering or techincal support?  We are based in Brisbane, so just drop us a line, we're happy to help!

 

If you've read our guides and are still unsure of the best solution for your situation, call or drop us a line - sometimes it helps to chat with an expert!

 

 

Copyright Telco Antennas Pty Ltd. All rights reserved.

Recommended article:
Is 5G Home Internet Worth the Hassle? Your Questions ...

Link to jija

How to Pick the Right 4G LTE Technology for Your ...

With the shutdown of 2G and 3G networks looming on the horizon, many organizations are faced with the difficult question of “So, what’s next?” The key question to really ask is, “Well, what is the application?” Meaning, what is the current or projected use case and how will it be impacted by the new LTE technology. In addition, ask yourself where are you today and where do you want to be in five years; and most importantly, what business problems are you trying to solve with the new network capabilities?

You’ll soon find there are many items associated with those key business and technology questions that need to be further analyzed:

  • Bandwidth: determine whether you need data transferred in bursts or as a steady feed over time; and decide if you need to transfer only a few bytes or several GB each day.
  • Data Plan: evaluate if data will be needed in real time, or if a several second, minute or hour delay is tolerable, and choose the most economical plan.
  • Connectivity: decide if your organization’s communication requirement is to be localized across a building, plant, or a city – or even across a country or worldwide. Consider whether you must always remain online, and if downtime could put you at the risk of lost revenue, regulatory penalties or safety violations.
  • Environmental: assess whether your equipment will be in a climate-controlled environment or outdoors in harsh, even hazardous settings. Determine if AC power will be available, or if battery or solar power is the only option.
  • What about 5G? Finally, weigh the pros and cons of waiting for 5G. Do you want to take on a bleeding-edge technology in its initial stages, or would you rather rely on a proven leading-edge technology like 4G? Will a bleeding edge technology make your application or its output better? Keep in mind that 4G is also evolving into 5G over time.

Today, we are at a fork in the road. One path can leverage Gigabit LTE for high-speed applications in retail, enterprise or transportation industries that need to connect sites or people with mains-powered, high bandwidth – and higher cost – solutions. The other path can leverage 4G LTE optimized for IoT applications in industrial locations to connect machines and other critical assets that require low bandwidth, low cost, and low- or battery-power as indicated by the chart below.

4G LTE Evolution for IoT

Each 4G LTE technology has its pros and cons, while carriers considering a roll out of LTE-M or NB-IoT as a secondary network only adding to the complexity. Here’s a deeper dive into the technology options for IoT devices:

  • CAT 1: represents a good fit for many single-device IoT applications with mains-power, such as digital signage and kiosks, industrial controllers and security cameras. It is globally available where LTE is accessible.
  • CAT 3/4: with the potential of speeds up to 100-150 Mbps, this technology is designed for IoT routers connecting multiple devices. However, it may be excessive for most single-device IoT applications.
  • CAT-M/LTE-M: fits traditional 2G-type applications, devices that require mobility, such as asset trackers, as well as battery-powered IoT sensors. Defined in 2016, it is not yet fully globally available, but is predominant in North and Latin American and Asian markets with early LTE adoption.
  • NB-IoT: best fit for battery-powered devices that do not require mobility, such as fixed-asset sensors. Also defined in 2016, it is not globally available as this time, but suits markets with late LTE adoption, like Europe.

4G LTE Evolution for Gigabit LTE

Now let’s go down the other path with a look at Gigabit LTE and the 4G evolution to 5G.
The 3rd Generation Partnership Project (3GPP) is a collaborative group of telecommunications associations that defines the standards to build the foundation of cellular networks, such as LTE.

Since its initial release in 2008, LTE (Long Term Evolution) has evolved, and continues to evolve towards 5G over time. Typically, 3GPP releases a major update of the standard every three years, followed by a minor release. To differentiate between major LTE releases, 3GPP introduced marketing names such as LTE-Advanced and LTE Advanced Pro. Release 13/14 were a key milestone for Gigabit LTE because the speed doubled to 1.2Gbps. Release 15, to be released later in 2018, will be the first standard defining 5G.

 

 

Four Requirements to Achieve Gigabit LTE Speeds

1. More RF channels and carrier aggregation: think multiple highways to transport more vehicles. Gives you better us of the available spectrum, as many carriers don’t have 20 MHz of licensed spectrum per band available.

  • Higher peak data rates
  • More capacity for bursts of usage

 

2. Higher-order modulation (HOM) (see Figure #2): think of a bus versus a car to transport more people (i.e., data) per vehicle, where the cellular network and device are constantly adjusting the modulation based on signal conditions. The downside of HOM is that a noisy or weak signal is harder to demodulate, which can result in retransmissions and lower speeds.

  • 16-QAM: 4 bits/symbol
  • 64-QAM: 6 bits/symbol, 25% improvement over QAM-16
  • 256-QAM: 8 bits/symbol, 33% improvement over QAM-64
  • 1024-QAM: 10 bits/symbol, 25% improvement over QAM-256.

3. More MIMO (Multiple Input, Multiple Output) antennas: think multi-lane highway with traffic moving on two directions (using multiple antennas to both transmit and receive data in parallel). Most devices today have two antennas per cellular modem, while Gigabit LTE devices will require four antennas to achieve higher speeds. For many devices, this means moving from direct-attach to cabled antennas.

4. More spectrum: the use of licensed, shared or unlicensed spectrum (3.5GHz/5GHz) for additional bandwidth now includes License Assisted Access (LAA) and Citizens Broadband Radio system (CBRS).

  • Citizens Broadband Radio System (CBRS)
    1. As of April 2015, the FCC authorized shared commercial access of the 3.5GHz band with incumbent military radars and fixed satellite stations
    2. The CBRS spectrum is assigned individually by Spectrum Allocation Server (SAS), 3 priority access levels
  • MulteFire
    1. MulteFire Alliance is a new industry alliance promoting private networks based on LTE technology
    2. MulteFire scales from LTE for IoT to Gigabit LTE
    3. It is not part of any 3GPP standard yet, but is considered for Rel. 16
    4. MulteFire could someday replace Wi-Fi networks

Private LTE networks provide new opportunities for either enterprises to deploy secure communication for increased flexibility and added security, or for the Industrial IoT (IIoT) to build a private network, for example in remote farming or mining sites to run industrial IoT devices and applications.

4G LTE Advanced Pro is here today and paving the way to 5G as outlined above. Though, you will not see Gigabit LTE speeds right away. You can expect speeds above 100 Mbps under good conditions on licensed LTE networks. Even higher speeds will become possible where unlicensed spectrum and infrastructure become available.

 

Want more information on Industrial 4g Router? Feel free to contact us.

10

0

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)