Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

Your Position: Home - Machine Tool Equipment - Sheet Metal Design Guidelines: Designing Components - Komaspec

Sheet Metal Design Guidelines: Designing Components - Komaspec

Author: Cheryl

Jul. 07, 2025

Sheet Metal Design Guidelines: Designing Components - Komaspec

Sheet metal part design is more complex than it might seem – sheet metal parts are, after all, relatively simple in appearance compared to an electronic component. However, there are a large number of considerations that go into designing and optimizing the design of sheet metal parts, from considering the built-in tolerances of the base material, to selecting the proper fabrication process and compensating for it in the part design, to selection of surface finishing options.

If you want to learn more, please visit our website.

This guide underscores the impact of Design for Manufacturing (DFM) strategies, a blend of theoretical and practical approaches that enhance precision, reduce errors, and optimize production timelines. It offers an in-depth analysis of sheet metal manufacturing tolerances, a critical aspect ensuring the consistency and quality of every piece manufactured.

Each section of this guide is crafted to provide insights into the multifaceted world of sheet metal design and fabrication, from the initial design phase to production.

Tolerance is considered the cornerstone of precision in sheet metal fabrication, serving as a measure of the acceptable variation between the initial design and the final product. It is a delicate balance that ensures the functional and structural integrity of the sheet metal part while allowing for minor deviations that do not compromise its quality or performance.

Precision in tolerancing is not just a technical requirement but a critical factor influencing the alignment and assembly of the finished product. While advancements in fabrication techniques and equipment have enabled the achievement of narrow tolerances (down to ±0.05 mm), it is essential to approach this with a balanced perspective. A tighter tolerance equals higher cost and generally increases manufacturing complexity, so the best approach is to default to looser tolerance requirements wherever possible.

A pragmatic approach involves aligning the tolerance specifications with the actual requirements of the sheet metal part, avoiding unnecessary precision that does not add value to the function or structure of the product. Each fabrication process comes with its inherent tolerance levels, making it imperative for designers to have a nuanced understanding of these variations and their implications on the overall design.

Consulting with your sheet metal manufacturer is advised to align the design specifications with the practicalities of fabrication, ensuring that the established tolerances are both achievable and cost-effective. This synergy between design precision and fabrication reality underscores the essence of optimal tolerance in sheet metal manufacturing, ensuring quality, functionality, and cost efficiency.

It's crucial to emphasize that the numerical values and guidelines outlined in this document are intended for general reference in the context of sheet metal design. They should not substitute for the specific, tailored tolerances provided by your custom fabricator. Variabilities in material type, equipment, tools, and other nuanced factors necessitate a customized approach to defining tolerances and clearances for each unique project.

Engaging in a collaborative dialogue with your fabricator is essential to align design aspirations with practical manufacturing capabilities and constraints. This alignment ensures that the established tolerances are not only theoretically sound but are also practically achievable, balancing precision, quality, and cost-effectiveness.

Every project presents a distinct set of requirements and challenges. Adapting tolerances and clearances to these unique parameters ensures that the final product aligns with the intended functional, structural, and aesthetic objectives while adhering to the highest standards of quality and efficiency.

Material tolerance is an intrinsic aspect of sheet metal parts, characterized by the built-in variances that occur due to factors like material properties and fabrication processes. These tolerances are particularly influenced by the thickness of the material, with each thickness category exhibiting distinct tolerance levels.

Material Tolerance - Thickness

Selecting the appropriate sheet thickness is a pivotal step in sheet metal fabrication. This choice influences a variety of factors including the part's overall strength, weight, and integral design features such as minimum bend radii, hole and slot sizes, and flange length. Ensuring uniform thickness throughout the sheet metal parts is essential to guarantee consistent quality and performance.

Guidelines for Material Thickness

A common trend in material tolerance is a lean towards negative tolerance. This indicates that the actual dimensions of the finished part may slightly undershoot the specified measurements in the design. It’s a critical aspect to consider in the design and fabrication processes to ensure the functional and structural integrity of the final product.

For a detailed and specific understanding, referring to a thickness tolerance chart is advisable. Such a chart provides comprehensive insights into the expected variances associated with different materials and thicknesses, serving as a valuable resource for designers and fabricators aiming for precision and quality in the finished products.

Material Tolerance - Properties

Depending on the material and the process used for sheet metal production, sheet metal material can also exhibit differences in physical properties such as surface tension, spring back, tensile strength, etc.

One of the aspects when selecting a material is to consider the amount of variability and safety factor the design allows. As an example, hot rolled carbon steels generally show more material variability than cold rolled varieties (though they are also more costly due to the secondary processing). For more precision bending, cold rolled steel would be the better selection to limit difference between material batches and improve bending consistency.

Precision and quality in sheet metal fabrication are heavily reliant on detailed and well-considered design, particularly when involving laser cutting and CNC bending technologies. The responsibility of the designer is to ensure that each element of the design is not only innovative but also compatible with the practical constraints of fabrication technologies. Every aspect, from the dimensions to the intricacies of curves and bends, must be tailored to align with the specific capabilities and limitations of the employed fabrication methods.

They are instrumental in ensuring that designs are tailored to the specific capabilities and constraints of the fabrication technologies, aligning innovative design aspirations with the practical aspects of material behavior, tool precision, and process efficiencies.

Sheet Metal Process - Laser Cutting

Laser cutting is a favored technique in precision sheet metal fabrication, known for its accuracy and efficiency. It’s especially suitable for projects demanding high precision, and is capable of achieving tolerances as tight as +/- 0.127mm. This method is versatile, handling materials up to 20 mm (0.78″) thick, accommodating a wide range of applications.

However, it's essential to consider the inherent limitations of laser cutting:

  • Hole Size Limitation: The minimum hole sizes achievable are constrained by the size of the laser beam and the thickness of the material. In general, when the hole diameter is less than the material thickness the pierce point will often cause the hole to be out of tolerance.
  • 3D Feature Constraints: Laser cutting is not suitable for creating tapered cuts or intricate 3D features due to the linear nature of the laser beam.

These constraints necessitate careful planning during the design phase to align project requirements with the capabilities of the process. It underscores the importance of a balanced approach, where design innovation is harmonized with practical execution to ensure the final components are both high-quality and fit for purpose.

Laser Cutting Linear Hole Diameter Standard High Precision Standard High Precision ±0.20mm ±0.15mm ±0.25mm ±0.10mm Laser Cutting Hole Size Minimum hole diameter ≥ ½ sheet thickness Best Practice hole diameter ≥ sheet thickness Maximum Hole Size Area = (π (diameter)²) / thickness

Sheet Metal Process - Sheet Bending

CNC sheet bending involves the use of press brakes to manipulate sheet metal into desired shapes. While tooling is a fundamental aspect of this process, not all bending requires custom dies, offering a degree of flexibility in the fabrication process. Manual operators play a crucial role, and the type of equipment used can significantly influence the bend radius tolerances achieved. Key considerations in CNC sheet bending include:

  • Corner Formation: Achieving a true 90° corner is typically not possible; corners will have a radius.
  • Bend Angles: The standard tolerance for bend angles is ± 0.5°, ensuring precision while allowing for minimal variance.
  • Bend Length: Tolerances for bend length are generally ±0.20 mm (0.010″) per bend, balancing accuracy and flexibility in the bending process
Sheet Bending Linear Bend Angle Standard High Precision Standard High Precision ±0.1mm ±0.05mm ±1˚ ±0.5˚

Sheet Metal Process - Stamping

Stamping tolerance refers to the allowable variance in dimensions and shapes during the stamping process. This process involves the use of dies to cut and form metal sheets into specific shapes and sizes. The precision of stamping is influenced by several factors, including the type of material, its thickness, and the complexity of the dies. Key considerations in stamping tolerance include:

  • Material Behavior: Different materials respond variably to stamping, influencing the accuracy of the final product.
  • Die Precision: The complexity and precision of the dies used directly impact the tolerance achievable.
  • Process Speed: The speed of the stamping process can affect heat generation and material deformation, further impacting tolerance.
Stamping 1mm to 3mm Linear Hole Diameter Bend Angle Form Features Std Tight Std Tight Std Tight Std Tight ±0.1mm ±0.05mm ±0.05mm ±0.025mm ±1˚ ±0.5˚ ±0.1mm ±0.05mm

Sheet Metal Process - Punching

Punching tolerance is concerned with the allowable deviations during the punching process, where holes or shapes are created in the sheet metal. The precision in punching is paramount to ensure the functional and structural integrity of the final product. Factors influencing punching tolerance:

  • Tool Wear: The condition and wear of punching tools can affect the accuracy of the holes or shapes punched.
  • Material Thickness: Thicker materials may present challenges in maintaining tight tolerances.
  • Machine Calibration: The calibration and maintenance of punching machines play a crucial role in achieving desired tolerances.
Punching Linear Hole Diameter Angle Features Std Tight Std Tight Std Tight ±0.1mm ±0.05mm ±0.1mm ±0.05mm ±1˚ >1˚

Sheet Metal Process - Rolling

Rolling tolerance pertains to the allowable variations during the rolling process, where sheet metal is passed through rollers to achieve specific thicknesses or shapes. The uniformity and consistency of the rolled sheet metal are critical and highly depends on the thickness of the material. Key aspects of rolling tolerance:

  • Roller Condition: The state and alignment of rollers influence the uniformity of the rolled sheet metal.
  • Material Properties: The inherent properties of the material, including its ductility and strength, impact the rolling tolerance.
  • Temperature: The temperature during rolling can affect material behavior and, consequently, the tolerance achieved.
Sheet Metal Rolling Thickness Width ±0.1mm ±0.5mm

Hems are an essential element in sheet metal design, enhancing the strength of edges and eliminating sharpness, though they contribute additional weight to the part. Hemming is the process of folding a piece of sheet metal over itself; this can improve aesthetics by hiding edges or burrs, and provide added strength and reinforcement.

The pursuit of flat hems can lead to material fractures; hence, the design should focus on open or teardrop hems to mitigate this risk.

Key Design Guidelines for Hems

Open Hems:

  • The inside diameter should be at least equal to the material thickness to ensure structural integrity.
  • A cautionary approach is necessary for larger diameters as they may lose shape.
  • The return flange should be at least four times the material thickness to maintain stability.

Teardrop Hems:

  • These should also have an inside diameter at least equal to the material thickness.
  • Openings should be at least ¼ of the material thickness to uphold structural integrity.
  • The return flange should be at least four times the material thickness to ensure robustness.

Incorporating these specific design parameters ensures that hems contribute effectively to the structural strength and safety of the sheet metal parts, balancing the enhancement of functional attributes while adhering to safety standards.

The following table outlines the minimum distance guidelines between a hem and other features such as holes and bends in sheet metal parts. These distances, calculated based on material thickness and the hem's radius, are essential for ensuring structural integrity and optimal functionality during fabrication.

Feature Type Minimum Distance Guidelines* Between hem and hole ±2 x material thickness + radius of the hem Between hem and internal bend ±5 x material thickness Between hem and external bend ±8 x material thickness

Gussets offer a practical solution to enhance the strength of flanges without the need for welding. These specialized components are integrated into sheet metal designs to reinforce structural integrity, ensuring that the final products can withstand various stresses and strains during their operational life.

The production of gussets typically involves custom tooling, a process that allows for precision and customization to meet specific design and performance criteria. This approach ensures that gussets are tailored to fit and function optimally within the broader design, contributing to the durability and reliability of sheet metal components while also streamlining the fabrication process by eliminating the need for welding.

Outlined below are the minimum distances to be maintained between a gusset and other features like edges and holes in sheet metal components. These guidelines are calculated considering the material thickness and the specific features involved, aiming for a balanced and efficient design.

Feature Type Minimum Distance Guidelines* Between gusset and edge ±8 x material thickness + radius of the gusset Between gusset and hole ±8 x material thickness

Ribs and embossments are integral features that enhance the structural integrity and aesthetic appeal of the final products. Ribs add strength and rigidity to sheet metal components, reducing the need for thicker, heavier materials.

Embossments, on the other hand, are raised or recessed patterns on the surface that can serve both functional and decorative purposes. These features are produced to meet specific design and performance criteria, ensuring that each sheet metal component is optimized for its intended application.

Key Design Guidelines for Ribs and Embossments

  • Rib Inside Radius: The inside radius of a rib should not exceed three times the material thickness to ensure structural stability.
  • Round Embossment or Rib Depth: The maximum depth is equal to its inside radius, balancing structural integrity and design aesthetics.
  • Flat Embossment Depth: The depth should be equal to the inside radius plus the outside, ensuring a harmonious integration into the overall design.
  • V Embossment Depth: The maximum depth for a V embossment is capped at three times the material thickness, ensuring it is structurally sound and aesthetically pleasing.

The table below outlines the minimum distance necessary for the integration of ribs or embossments in sheet metal components.

Feature Type Minimum Distance Guidelines* Between rib or embossment to a hole ±3 x material thickness + radius of the rib Between rib to an edge in a perpendicular plane ±4 x material thickness + radius of the rib Between rib to an edge in a parallel plane ±8 x material thickness + radius of the rib Between rib to a bend perpendicular to the rib ±2 x material thickness + radius of the rib + bend radius Between parallel ribs ±10 x material thickness + radii of the ribs

*Please use these numbers as sheet metal design guidelines only and always check with your fabricator for their recommendations before completing your design.

Countersinks and counterbores play a critical role in achieving a flush surface for seamless fastening between parts. A countersink is characterized by a conical hole, engineered to house screws, ensuring a smooth surface post-assembly.

In contrast, a counterbore is characterized by a straight, flat-bottomed hole, typically designed to accommodate bolts or nuts. It's important to note that these features are not advisable for use in thin materials due to structural integrity concerns.

Key Design Guidelines for Countersinks and Counterbores

  • Countersink Depth: The depth of a countersink should not exceed 0.6 times the thickness of the material to maintain structural integrity.
  • Countersink-Fastener Contact: There should be at least 50% contact between a countersink and a fastener to ensure a secure and stable connection.

These guidelines are essential to optimize the functionality and durability of the assembled metal parts, ensuring that the countersinks and counterbores are effectively integrated without compromising the structural integrity of the materials involved.

The following table outlines the minimum distance parameters that should be maintained between these features and other elements like edges and bends, as well as between the features themselves.

US Metal Spinning supply professional and honest service.

Feature Type Minimum Distance Guidelines* Between countersink and edge ±4 x material thickness Between countersink and bend ±3 x material thickness Between countersinks ±8 x material thickness Between counterbore and edge ±4 x material thickness Between a counterbore and a bend ±4 x material thickness + bend radius Minimum distance Between counterbores ±8 x material thickness

Metal Parts Manufacturing - How to Make Custom Metal Parts

There are two main types of CNC machining technologies. CNC mills are automated cutting machines. They cut away unwanted material with a rotating spindle head. Turning spins material against a stationary tool to remove material into the desired shape. They work well with a range of materials, including plastic, aluminum, stainless steel, and titanium.

How CNC Machining and Turning Works

CNC turning involves the use of either CNC lathes or multi-axis CNC turning centers. Manufacturers use CNC lathes to turn materials for cylindrical and concentric features on parts. Live tooling lathes incorporate end mill cutting tools and drills to produce off-axis features without the need to change platforms. Specialized CNC-lathes, often called Swiss machines, are designed to produce small parts with complex features quickly by combining multiple tools and spindles within the machine.

A typical lathe will rotate the part on a central axis to remove features by engaging rigid cutting tools. Other features performed by a lathe include the creation of internal and external threads, creating flanged features, O-ring grooves, and knurled textures.

CNC lathes and CNC mills have different axis configurations. CNC lathes are typically 3- or 4-axis machines with a single spindle. 3-axis CNC machining works materials on X, Y, and Z axes, removing shavings along these three directions. 4-axis tools incorporate movements outside of concentric features on lathes and a tilt on mills. Lathes are ideal for circular parts and are more operationally intensive for irregular shapes and sharp edges, the reverse for mills.

More modern CNC technologies support up to 5 axes. These tools add tilt and rotation to traditional X, Y, and Z axes, enabling precise cutting for more detailed parts. 5-axis machining is also more efficient as it can create more part features in a single operation. Mills are available in several configurations, often employing 3-, 4-, and 5-axes.

CNC stands for Computer Numeric Controlled, and operators control CNC mills and lathes with G-Code—a programming language that provides machine-movement instructions. Modern programming instructions are created through computer-aided manufacturing (CAM) software. This code instructs the machine where to move the tool head. It also controls its speed and feeds, which are rotation, cut depth, and workpiece movement. The G-Code complexity depends on the machine’s number of axes and the toolsets used.

CNC Materials

CNC mills and CNC lathes work well with similar materials. These include aluminum, brass, bronze, copper, steel, stainless steel, titanium, and zinc alloys. These tools also work well with plastic and composites such as acetal, ABS, G-10, and performance materials like PEEK or PTFE.

CNC Use Cases and Industries

CNC mills are the workhorses of the manufacturing world since they are both precise and repeatable. This means they are ideal for rapid prototyping and low- to high-volume production. Their versatility with materials makes them ideal for almost any job.

CNC lathes are similarly versatile. Production with lathes also requires fewer setups for hands-free operations, which makes them efficient options for a range of use cases. The shape of the part and specified tolerances typically determines which of the two methods to use—with parts with concentric features requiring lathes and angular pieces requiring milling.

Industries that use CNC machining include:

  • Aerospace and defense
  • Automotive
  • Consumer products
  • Electronics
  • Industrial
  • Medical and dental
  • Robotics

Visit our CNC Milling Service and CNC Turning Service pages for more information about stock, finishes, applications, and other process advantages.

Extrusion involves pushing heated metal or plastic through a die. In practice, it resembles squeezing a tube of toothpaste. The die creates a net shape, such as a tube, L-structure, or more complex features. Metal part extrusion typically requires post finishing, such as cutting, drilling, or machining. It’s ideal for high volumes of parts that require constant cross-sections.

That’s because extrusion profiles can be almost any shape with a continuous cross-section. A great example is framing for windows, with multiple features to secure different panes in the assembly. They can even be hollow, such as square, round, or hexagonal tubing. Manufacturers determine its form when creating the shape of the die.

How Extrusion Works

The three types of extrusion are hot extrusion, cold extrusion, and friction. Hot extrusion involves high temperatures to keep work material from hardening. Cold extrusion involves near room temperatures, which provides some advantages over hot extrusion. The material may be stronger, have less oxidation, or have closer tolerances. Finally, friction extrusion involves the use of force to push the charge against the die.

Extrusion Materials

Extrusion materials can be either plastics or metals. Roughly 80% of extruded metal parts are aluminum alloy. Meanwhile, polyethylene is most common in plastic extrusions.

Use Cases and Industries

Extrusion is a simple process compared to other methods. Its tooling costs are 80% to 90% less than injection molding and die casting. Extrusion provides smoother surfaces for paints and finishes as well. This makes extrusion ideal for precision and cosmetic parts. Flooring, windows, and railing are ideal applications. Automotive and aerospace components are ideal for extrusion as well.

Metal casting is a long-standing manufacturing process. It involves pouring liquid metal into a mold. The liquid metal hardens in the form of the desired shape. It is then cooled and extracted from the mold.

Modern metal casting is precise, automated, and uses advanced tools. But its principles remain the same. Its wide use is a testament to the success of this method.

How It Works

The metal casting process begins with patternmaking. Patterns create part-shaped voids in the mold prior to pouring in the liquid metal. Modern patternmaking methods use precise calculations to achieve the desired shape. This can include scaling to account for shrinkage as well as having an excess material thickness in preparation for post CNC finishing.

In many cases, the mold is destroyed during the casting process. This is a planned step when sand casting, where a cast formed from sand is broken apart to reveal the finished part. New sand casting molds are easy to make, and sand is often reclaimed to create new molds.

Metal casting may also involve the use of wax in a process called investment casting. Manufacturers start by building a wax model of the final product. The wax is covered in layers of ceramic before the wax is heated and removed. The ceramic shapes the mold, its interior imprinted with a pattern shaped by the wax.

Each of these two techniques has benefits. Sand casting is a simpler process, for example, and easy to repeat. Investment casting requires more preparation but may perform better when creating intricate parts. Sand casting is often more costly; investment casting requires more labor to change a given design. Manufacturers must determine the best process given their budget and labor limitations, and the qualities they want for their parts.

Metal Casting Materials

Metal casting is a versatile process. It supports parts from any metal stock that can achieve liquid form. That’s why engineers across industries use a range of materials in metal casting. Aluminum, magnesium, and copper alloys are among the most common. But manufacturers also use zinc, steel, and other metals.

Casting Use Cases and Industries

Nearly every commercially produced mechanical device today uses some form of casting. In serial production, casting typically outperforms CNC machining on costs and throughput. Metal casting can achieve high tolerance structural components for a variety of use cases. Washing machines, automobiles, and metal pipes all use metal casting.

Die casting is ideal for high volumes of complex metal parts. Die casting uses steel molds and low-melting-point metals as materials. Engineers utilize die casting for sophisticated projects where accuracy, reliability, and production-level throughput are critical. Die casting uses reusable hard tooling similar to the injection molding process, giving parts smoother surface finishes while maintaining low cost in mass quantities.

How It Works

In die casting, liquid metal is forced into a mold via high-hydraulic or pneumatic pressure. This differs from traditional metal casting where the metal is poured. Manufacturers favor die casting when making parts with intricate details. The use of pressure makes creating intricacies more effective.

Hot-chamber, or “gooseneck,” die casting is the most popular method. “Gooseneck” describes the shape of the metal feed system that delivers molten metal to the die mold. Manufacturers use cold-chamber die casting to limit machine corrosion. This method involves ladling molten metal into the injection system instead. In each of these methods, the process is similar to plastic injection molding where the steel tool is closed and the part material flows into the mold cavity to harden in the form of the part. Once hardened, the tool opens up and the part is either dropped mechanically or manually removed.

Die Casting Materials

Die casting manufacturers often specialize in individual materials, including aluminum, zinc, or magnesium. This is because the feedstock is molten metal juxtaposed to the dedicated die casting machine. Roughly 80% of die-casted parts are made of aluminum. Zinc alloy, another low-melting temperature metal, is also a common material used in die casting.

Use Cases and Industries

Die-casted parts are versatile. They are strong and resistant to high temperatures. They also feature smooth or textured surfaces. Die casting favors high production volumes, where it typically can outcompete CNC and investment casting. This supports a wide range of paints, plating, and finishes. Still, die casting is ideal for use with high-impact, high-stress equipment where strength is essential.

Contact Xometry's support team to inquire about Xometry's die casting services.

Injection molding is most common for creating plastic parts. But manufacturers use injection molding services for metal parts as well. It is cost-efficient for large-scale projects, even with high precision. Although it is ideal for projects that require small parts, metal injection molding, or MIM, can be used for parts of any size.

How It Works

Unlike die casting, metal injection molding uses a feed of polymer-metal mix, where the melted plastic allows the material to flow when heated. The material is also pressurized during this process. The machine injects the liquid material into the mold. The material cools and takes the form of the mold to make the part.

After molding, the parts are in a “green state,” meaning that they are in the right shape but are very fragile. A post-sintering process completely ablates the plastic, leaving only fused metal behind. During this furnace process, typically done in a vacuum furnace, the part shrinks a considerable amount.

MIM Materials

Metal injection molding can be used with metals common to other manufacturing processes. However, the process requires those metals to be powdered and blended with the polymer for injection. In this way, parts can be quickly shaped and produced in large production batches.

Use Cases and Industries

Metal injection molding resembles plastic injection molding processes for creating parts. But the high-pressure nature of injection molding adds key benefits. It is effective for parts with small, complex details. This would be too costly for standard CNC machining processes at scale. That’s why metal injection molding is ideal for the medical, aerospace, automotive, and defense industries.

Injection molding tooling can be used longer than die casting and other metal manufacturing methods, allowing higher counts of parts before replacement or maintenance. MIM typically outcompete die casting on smaller parts in serial production or where finer part detail is required. This makes it suitable for repetitive processes at scale. It provides manufacturers greater flexibility in terms of strength and unique characteristics as well.

Like metal casting, forging has been used for centuries. It is the process of heating and shaping metal parts by force. The familiar image of a blacksmith and anvil comes to mind. Today, forging is widely used in automated industrial processes.

How It Works

Modern forging uses high-impact machines to shape metals into desirable results. Forging produces less waste than other methods, which makes it more cost-effective for practical applications.

Forged parts are often stronger than parts from other methods. That’s because forging takes advantage of the natural grain of its materials. Materials do not need to be reduced to liquids when molded in a forge, just heated to a malleable state.

Forging Materials

Stainless steel is among the most common forged materials. Aluminum and bronze are also common forging materials.

Use Cases and Industries

Forging is ideal for any number of industries. Its benefits and limitations make it an ideal process to use alongside other manufacturing materials. Forged tools, such as hammers or wrenches, are common examples of end-use, lifelong components made with this method. Manufacturers should identify use cases where the advantages of forging contribute to better business and production results.

Sheet metal fabrication involves cutting parts from metal sheets. The blanked sheets may then be processed through brakes and die presses to create angular bends and forms, building a 3-dimensional structure. Sheet metal services feature stamping to produce these parts at rapid paces. In fact, stamping is faster than any other metal-working process.

How It Works

Stamping machines cut and bend parts out of sheet metal. Workers feed stamping presses a cut or coil of sheet metal. The machine straightens the metal as it is fed into the press. Strategic application of force allows manufacturers to adapt the shape of parts. Bending applies force at an angle, for example, creating a desired angle in the part. Manufacturers use press brakes for this process, which are available in different sizes and lengths to accommodate the needs of the manufacturer. Sheet metal parts can be welded or riveted to create structural elements. Press-fit inserts, such as PEM inserts, can add mating features like bosses, threads, and more without the need of custom machining.

Sheet Metal Materials

Sheet metal is often made of aluminum, copper, or steel. Sheet metal also has a wide variety of finishes. This includes anodizing, plating, powder coating, and painting.

Use Cases and Industries

Stamping makes sheet metal fabrication highly scalable for any industry. It is ideal for high volumes and low unit costs. High-volume, functional parts like enclosures, chassis and brackets often feature sheet metals.

But the tooling cost for stamping is often higher than with other processes. Still, manufacturers create hundreds of millions of parts in the appliance, electronic, and automotive industries each year. Sheet metal and stamping are uniquely optimal for robotics.

Visit our Sheet Metal Fabrication Service page for more information about stock, finishes, applications, and other process advantages.

Metal 3D printing services use precise lasers to create metal parts. It is ideal for experimentation and low-volume, high-value parts, but is not as scalable as many of the other metal processes listed. That’s why it is often used for prototypes, as well as substitutes for low-volume casting.

How It Works

3D printing, also known as additive manufacturing, fuses metal in a controlled environment via an energy source. With direct metal laser sintering (DMLS), metal powder is fused layer-by-layer using a laser in an inert environment. Metal binder jetting 3D prints metal parts in a 2-stage process, using an inkjet to bond metal together to a green stage before a secondary furnace process solidifies the metal. Binder jetting can make a metal composite, such as bronze and steel, or a single-alloy, depending on the needs. Metal 3D printing is unique in that it can produce all-in-one assemblies and geometries with inaccessible areas using standard tooling. An example of inaccessible features with traditional processes is building lattice-like structures on a part. This is not possible with traditional molding or casting techniques. Techniques that come close would nonetheless require more time and complexity to produce a single unit.

Metal 3D Printing Materials

The typical stock material for metal 3D printing is atomized powder, but can sometimes be sheet or wire-fed. The printer follows a data path created using a 3D CAD file of the part. Common metal materials include powder in stainless steel, titanium, Inconel, copper, or aluminum materials.

Materials used in metal 3D printers often come from powder metallurgy. Adoption of new materials for metal 3D printers requires significant research to build a robust, and repeatable method of building parts without failure or defects. This means the material choices currently available for metal 3D printing are narrow compared to machining, metal casting, and other fabrication methods.

Use Cases and Industries

Despite its limits, metal 3D printing has near-universal applications. Due to direct digital manufacturing, 3D printed parts can often be produced quickly in low volumes without tooling expenses. Engineers can experiment with 3D printing to preface the production of just about any part, as well as design part features that are specific to applications like lightweight mechanical aerospace components.

Visit our Direct Metal Laser Sintering (DMLS) page or our metal 3d printing service page to learn more about optimizing manufacturing processes with Metal 3D printing.

Contact us to discuss your requirements of Custom Metal Shapes. Our experienced sales team can help you identify the options that best suit your needs.

115

0

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)